The paper is dedicated to study the influence of the additive Gaussian White Noise on the Spectral Correlation Density ( SCD) analysis of Amplitude Modulated ( AM) signals. 重点研究了加性高斯白噪声对调幅信号谱相关密度分析结果的影响。
A new image retrieval method by using max correlation min distance to combine together texture features, Gaussian density characteristics and face detection of images for image retrieval is presented. 提出利用最大相关最小距离将图像的纹理特征、高斯密度特征与人脸检测相结合的算法进行图像检索。
Clustering of medical image based on Gaussian mixture density model 基于高斯混合密度模型的医学图像聚类方法
Moving object detection method using background Gaussian kernel density estimation 利用背景高斯核密度估计的运动目标检测方法
In order to deal with moving weather clutter of Gaussian power density function, a computation method and its implement technology for adaptive moving clutter filter based on a minimum power criterion are discussed. 针对常见的高斯型功率密度函数的运动气象杂波,寻求一种基于最小功率准则的自适应动杂波抑制滤波器的设计方法及实现技术。
The background samples are chosen by thresholding inter-frame differences, and the Gaussian kernel density estimation is used to estimate the probability density function of background intensity. 通过相隔固定的帧差值阅值化得到背景样本值,并采用高斯核密度估计方法计算背景灰度的概率密度函数。
Gaussian Mixture Density Modelling and Decomposition ( GMDD) is a hierarchical clustering method based on robust statistical theory. 高斯混合密度降解模型(GMDD)是一种基于稳健统计理论的层次结构的聚类模型。
A classifier based on EMGD_HMM ( Ergodic Mixed Gaussian Density HMM) is proposed to classify speech, music, and their mixed audio. 提出了一种基于各态历经混合高斯密度隐马尔可夫模型(EMGDHMM)的音频分类器,用于语音、音乐以及它们混合声音的分类。
In this paper, the Gaussian Mixture Model is used to approximate the arbitrary density function of sources, and an iterative algorithm based on Expectation& Maximization ( EM) is provided. 针对这一问题,本文用高斯混合模型来逼近任意分布的源信号的密度函数,并提出了一种迭代的期望最大化算法。
The method uses a self-organizing map to obtain the class label for each training sample and enhanced Fisher linear discriminant ( EFM) to find the optimal projection for pattern classification, and a Gaussian distribution to model the class-conditional density function of the projected samples for each class. 该方法首先使用自组织映射网络为每个训练样本确立类别标签,然后用改进的Fisher线性判别模型对所有样本进行投影以尽可能拉大各类之间的距离,最后使用高斯分布对每类样本进行建模。
When training, estimate a Gaussian probability density function for pitch period of every person in the training library. 在训练时为训练集中的每个说话人估计一个一维高斯形式的基音周期概率密度函数;
With Gaussian mixture autoregressive model, the probability density and power spectrum density of non-Gaussian colored processes can be fit. Its parameters can be estimated through the LS-EM algorithm. Based on descriptions of the model and the estimation problem, the LS-EM algorithm is deduced. 混合高斯自回归模型对有色非高斯数据的概率密度和功率谱密度进行有效的拟合,而LS-EM算法则可解决这一模型的参数估计问题。
The problem of estimating the difference in arrival time of a non Gaussian signal corrupted by Gaussian or symmetric probability density function noise is considered. 讨论了存在于相关高斯或对称分布噪声中的非高斯信号的时延估计问题。
In signal processing applications, it is often required to compute the integral of the bivariate Gaussian probability density function ( pdf) over the four quadrants. 在信号处理的应用中,经常需要计算双变量高斯概率密度函数在四个象限上的积分值。
By considering the Gaussian spatial distribution of the intracavity photon density and the thermal effect in the gain medium, the coupled rate equations of a LD-pumped passively Q-switched Nd ∶ GdVO_4 laser at 1.06 μ m with Cr 4+ ∶ YAG are given. 考虑腔内光子数密度的空间高斯分布以及晶体热效应的影响,给出了LD泵浦Nd∶GdVO4晶体Cr4+∶YAG被动调Q1.06μm激光的耦合速率方程组。
In the GMM, 32 mixed orthogonal Gaussian density functions have been used to realize the system objective and the LBG algorithm is used in the initialization process. 对GMM,系统采用32混合数连续正交高斯密度函数实现,参数初始化采用LBG聚类方法实现。
A novel diversity-sampling based Gaussian kernel density estimation ( KDE) model was proposed for the representation of multimodal background. 提出了一种基于多样性采样原理的高斯核密度估计模型用于多模态背景描述。
Speech Separation Based on Gaussian Mixture Model Probability Density Function Estimation 基于高斯混合密度函数估计的语音分离
Under the Gaussian hypothesis, probability density functions and numerical characters such as mean, variance and hybrid 2nd order moment of the instantaneous polarization projection vector ( IPPV) of TV-EMWs are studied in this paper. 在正态假设下,研究了时变电磁波瞬态极化投影矢量(IPPV)的概率分布和均值、方差、混合二阶矩等数字特征,得到了电磁波IPPV一些重要统计性质。
Moving object detection based on Gaussian kernel density model 基于高斯核密度模型的运动目标检测
Looking upon the gray level histogram as a mixture of two Gaussian density functions is a conventional model in the image segmentation, unfortunately the histogram of the complex image often appears a multi-peak feature. 将目标和背景分别对应到灰度直方图中的两个高斯分布是进行图象分割的一种常用方法,但复杂图象的直方图往往是多峰的。
Gaussian Kernel Density Estimation-based Background Modeling with Noise and Shadow Suppression 高斯核密度估计背景建模及噪声与阴影抑制
Simultaneously it is proved that the distribution of 3-D SWT coefficients follow the generalized Gaussian density function by using the distribution relative entropy theory. 同时通过相对熵理论证明了3-DSWT变换系数符合广义高斯分布。
And then, the subsequent iterative simulation procedures were taken with initial Gaussian importance sampling density function whose parameters were estimated by using this set of samples. 然后利用这组样本来估计初始高斯型重要抽样密度函数的参数,并执行随后的迭代仿真过程。
Such as Gaussian distribution of unknown parameters can be estimated, but it can not get good results of mixed Gaussian density. 例如对高斯分布可以很好的估计未知参数,但对混合高斯分布的密度就得不到很好的结果。
At the same time, we analyzed the power spectrum density of different sea-state clutter and found that Gaussian power spectrum density model is suitable to indicate the high and low sea-state clutter. 同时也对高海情与低海情下的海杂波的功率谱进行了分析,得出不同海情下的海杂波功率谱密度符合高斯型。
Now the estimation of probability density algorithms are based on the Gaussian model, while the actual distribution of probability density may be random. The density that is solved by Support Vector Machine and tested is applied to the estimation of distribution algorithm. 然后针对现在的分布估计算法的概率密度大多是基于高斯模型,而实际应用中样本的概率密度可能是任意的情况,本文将支持向量机求解并仿真测试过的概率密度应用到分布估计算法中。
In this paper, Gaussian probability density function was adopted as the pheromone model of the continuous optimization space, proposed the continuous ant colony optimization algorithm introduced memory table-TACO. 本文以高斯分布概率密度函数作为连续优化空间的信息素模型,提出一种引入记忆表丁的连续蚁群优化算法-TACO。
In order to simplify the computation, Gaussian mixture density functions always use diagonal covariance matrices. 为了简便计算,高斯混合模型中的方差矩阵通常直接用对角方差矩阵代替,因而会对相似度的计算产生损失。